112 research outputs found

    Improving Human Reliability Analysis for Railway Systems Using Fuzzy Logic

    Get PDF
    The International Union of Railway provides an annually safety report highlighting that human factor is one of the main causes of railway accidents every year. Consequently, the study of human reliability is fundamental, and it must be included within a complete reliability assessment for every railway-related system. However, currently RARA (Railway Action Reliability Assessment) is the only approach available in literature that considers human task specifically customized for railway applications. The main disadvantages of RARA are the impact of expert’s subjectivity and the difficulty of a numerical assessment for the model parameters in absence of an exhaustive error and accident database. This manuscript introduces an innovative fuzzy method for the assessment of human factor in safety-critical systems for railway applications to address the problems highlighted above. Fuzzy logic allows to simplify the assessment of the model parameters by means of linguistic variables more resemblant to human cognitive process. Moreover, it deals with uncertain and incomplete data much better than classical deterministic approach and it minimizes the subjectivity of the analyst evaluation. The output of the proposed algorithm is the result of a fuzzy interval arithmetic, α\alpha -cut theory and centroid defuzzification procedure. The proposed method has been applied to the human operations carried out on a railway signaling system. Four human tasks and two scenarios have been simulated to analyze the performance of the proposed algorithm. Finally, the results of the method are compared with the classical RARA procedure underline compliant results obtain with a simpler, less complex and more intuitive approach

    Evolutionary undersampling for extremely imbalanced big data classification under apache spark

    Get PDF
    The classification of datasets with a skewed class distribution is an important problem in data mining. Evolutionary undersampling of the majority class has proved to be a successful approach to tackle this issue. Such a challenging task may become even more difficult when the number of the majority class examples is very big. In this scenario, the use of the evolutionary model becomes unpractical due to the memory and time constrictions. Divide-and-conquer approaches based on the MapReduce paradigm have already been proposed to handle this type of problems by dividing data into multiple subsets. However, in extremely imbalanced cases, these models may suffer from a lack of density from the minority class in the subsets considered. Aiming at addressing this problem, in this contribution we provide a new big data scheme based on the new emerging technology Apache Spark to tackle highly imbalanced datasets. We take advantage of its in-memory operations to diminish the effect of the small sample size. The key point of this proposal lies in the independent management of majority and minority class examples, allowing us to keep a higher number of minority class examples in each subset. In our experiments, we analyze the proposed model with several data sets with up to 17 million instances. The results show the goodness of this evolutionary undersampling model for extremely imbalanced big data classification

    Monitoring and analysing oil condition to generate maintenance savings: a case study in a CNG engine powered urban transport fleet

    Full text link
    The authors from Universitat Politecnica de Valencia wish to thank Spanish Grant TRA2008-06508 from Ministerio de Ciencia e Innovacion - Direccion General de Investigacion for supporting this work. Mr Gomez thanks the UPV for his grant 2011-S2-5003 in the frame of the PAID programme.Tormos Martínez, BV.; Olmeda González, PC.; Gomez Estrada, YA.; Galar, D. (2013). Monitoring and analysing oil condition to generate maintenance savings: a case study in a CNG engine powered urban transport fleet. Insight - Non-Destructive Testing & Condition Monitoring. 55(2):84-87. https://doi.org/10.1784/insi.2012.55.2.84S848755

    A multi-objective fuzzy mathematical approach for sustainable reverse supply chain configuration

    Get PDF
    BACKGROUND : Designing and implementation of reverse logistics (RL) network which meets the sustainability targets have been a matter of emerging concern for the electronics companies in India. OBJECTIVES : The present study developed a two-phase model for configuration of sustainable RL network design for an Indian manufacturing company to manage its end-of-life and endof- use electronic products. The notable feature of the model was the evaluation of facilities under financial, environmental and social considerations and integration of the facility selection decisions with the network design. METHOD : In the first phase, an integrated Analytical Hierarchical Process Complex Proportional Assessment methodology was used for the evaluation of the alternative locations in terms of their degree of utility, which in turn was based on the three dimensions of sustainability. In the second phase, the RL network was configured as a bi-objective programming problem, and fuzzy optimisation approach was utilised for obtaining a properly efficient solution to the problem. RESULTS : The compromised solution attained by the proposed fuzzy model demonstrated that the cost differential for choosing recovery facilities with better environmental and social performance was not significant; therefore, Indian manufacturers must not compromise on the sustainability aspects for facility location decisions. CONCLUSION : The results reaffirmed that the bi-objective fuzzy decision-making model can serve as a decision tool for the Indian manufacturers in designing a sustainable RL network. The multi-objective optimisation model captured a reasonable trade-off between the fuzzy goals of minimising the cost of the RL network and maximising the sustainable performance of the facilities chosen.http://www.jtscm.co.zaam2018Industrial and Systems Engineerin

    An insight into imbalanced Big Data classification: outcomes and challenges

    Get PDF
    Big Data applications are emerging during the last years, and researchers from many disciplines are aware of the high advantages related to the knowledge extraction from this type of problem. However, traditional learning approaches cannot be directly applied due to scalability issues. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way to adapt for commodity hardware. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style. Additionally, inner problems of imbalanced data, namely lack of data and small disjuncts, are accentuated during the data partitioning to fit the MapReduce programming style. This paper is designed under three main pillars. First, to present the first outcomes for imbalanced classification in Big Data problems, introducing the current research state of this area. Second, to analyze the behavior of standard pre-processing techniques in this particular framework. Finally, taking into account the experimental results obtained throughout this work, we will carry out a discussion on the challenges and future directions for the topic.This work has been partially supported by the Spanish Ministry of Science and Technology under Projects TIN2014-57251-P and TIN2015-68454-R, the Andalusian Research Plan P11-TIC-7765, the Foundation BBVA Project 75/2016 BigDaPTOOLS, and the National Science Foundation (NSF) Grant IIS-1447795

    Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges

    Get PDF
    Railway importance in the transportation industry is increasing continuously, due to the growing demand of both passenger travel and transportation of goods. However, more than 35% of the 300,000 railway bridges across Europe are over 100-years old, and their reliability directly impacts the reliability of the railway network. This increased demand may lead to higher risk associated with their unexpected failures, resulting safety hazards to passengers and increased whole life cycle cost of the asset. Consequently, one of the most important aspects of evaluation of the reliability of the overall railway transport system is bridge structural health monitoring, which can monitor the health state of the bridge by allowing an early detection of failures. Therefore, a fast, safe and cost-effective recovery of the optimal health state of the bridge, where the levels of element degradation or failure are maintained efficiently, can be achieved. In this article, after an introduction to the desired features of structural health monitoring, a review of the most commonly adopted bridge fault detection methods is presented. Mainly, the analysis focuses on model-based finite element updating strategies, non-model-based (data-driven) fault detection methods, such as artificial neural network, and Bayesian belief network–based structural health monitoring methods. A comparative study, which aims to discuss and compare the performance of the reviewed types of structural health monitoring methods, is then presented by analysing a short-span steel structure of a railway bridge. Opportunities and future challenges of the fault detection methods of railway bridges are highlighted

    Heap-based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

    Get PDF
    Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.Instituto de Investigación en Informátic

    Ensemble and fuzzy techniques applied to imbalanced traffic congestion datasets a comparative study

    Get PDF
    Class imbalance is among the most persistent complications which may confront the traditional supervised learning task in real-world applications. Among the different kind of classification problems that have been studied in the literature, the imbalanced ones, particularly those that represents real-world problems, have attracted the interest of many researchers in recent years. In order to face this problems, different approaches have been used or proposed in the literature, between then, soft computing and ensemble techniques. In this work, ensembles and fuzzy techniques have been applied to real-world traffic datasets in order to study their performance in imbalanced real-world scenarios. KEEL platform is used to carried out this study. The results show that different ensemble techniques obtain the best results in the proposed datasets. Document type: Part of book or chapter of boo
    • …
    corecore